【考试要求】
1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;
2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.
【知识梳理】
1.直线与平面平行
(1)直线与平面平行的定义
直线l与平面α没有公共点,则称直线l与平面α平行.
(2)判定定理与性质定理
【微点提醒】
平行关系中的三个重要结论
(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.
(2)平行于同一平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
(3)两个平面平行,则其中任意一个平面内的直线与另一个平面平行.
【考点聚焦】
考点一 与线、面平行相关命题的判定
【规律方法】 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.
2.(1)结合题意构造或绘制图形,结合图形作出判断.
(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确
考点二 直线与平面平行的判定与性质
角度1 直线与平面平行的判定
角度2 直线与平面平行性质定理的应用
【规律方法】 1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.
2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反.
考点三 面面平行的判定与性质
【规律方法】 1.判定面面平行的主要方法
(1)利用面面平行的判定定理.
(2)线面垂直的性质(垂直于同一直线的两平面平行).
2.面面平行条件的应用
(1)两平面平行,分析构造与之相交的第三个平面,交线平行.
(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.
【提醒】 利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.
【反思与感悟】
1.转化思想:三种平行关系之间的转化
其中线面平行是核心,线线平行是基础,要注意它们之间的灵活转化.
2.直线与平面平行的主要判定方法
(1)定义法;(2)判定定理;(3)面面平行的性质.
3.平面与平面平行的主要判定方法
(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.
【易错防范】
1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.
2.面面平行的判定中易忽视“面内两条相交线”这一条件.
3.如果一个平面内有无数条直线与另一个平面平行,易误认为这两个平面平行,实质上也可以相交.
4.运用性质定理,要遵从由“高维”到“低维”,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。