同学们好,我是李状元数学课的李老师,讲人人都听得懂的高中数学课。
上节课我们讲了正弦、余弦函数的图像和性质,这节课我们来看正切函数y=tanx的图像和性质。
1. 定义域、值域和周期
首先y=tanx的定义域和sinx、cosx不一样,因为按照它的定义,要去掉终边落在y轴的角。
也即π/2的奇数倍,写成式子的话就是
x≠kπ+π/2,k∈Z. Z表示整数集。
它的值域也和sinx、cosx都不一样,不再是[-1,1],而是负无穷到正无穷,也即R.
在x=kπ+π/2(k∈Z)这些没有定义的位置,tanx的值趋向于正无穷或负无穷。x=kπ+π/2(k∈Z)这些直线是y=tanx的渐近线,夹在两条相邻渐近线之间的函数图像的两端不断贴近于渐近线。
y=tanx的最小正周期也和和sinx、cosx不一样,从2π变成了π。
2. 对称性
再来看一下对称性。
y=tanx没有对称轴,但是有无数个对称中心,原点是一个对称中心,相邻两个对称中心之间相距为π/2。所有的对称中心可以表示为(kπ/2,0),其中k∈Z。
3. 单调性
然后是单调性。y=tanx有无数个单调增区间,没有单调减区间。
每相邻的两条渐近线之间就夹着一个单调增区间。它的单调增区间可以表示为(kπ-π/2,kπ+π/2),k∈Z.
4. 奇偶性
从奇偶性来看,y=tanx=sinx/cosx是一个奇函数与一个偶函数相除,按照奇偶性的判断方法,我们知道它应该是奇函数。或者我们直接根据正切图像的对称性也能得到它是奇函数。
y=tanx和sinx、cosx一样,理解了它的图像,就能记住和理解它的绝大部分性质。
大家明白了吗?下课!
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。